"The Heart is Not a Pump – The Blood Pumps the Heart" By robblu (https://pastebin.com/u/robblu) URL: https://pastebin.com/p6bDP1rT Created on: Sunday 25th of September 2016 03:27:17 PM CDT Retrieved on: Saturday 31 of October 2020 03:25:17 AM UTC The Heart is Not a Pump – The Blood Pumps the Heart Abstract In 1932, Bremer of Harvard filmed the blood in the very early embryo circulating in self-propelled mode in spiralling streams before the heart was functioning. Amazingly, he was so impressed with the spiralling nature of the blood flow pattern that he failed to realize that the phenomena before him had demolished the pressure propulsion principle. Earlier in 1920, Steiner, of the Goetheanum in Switzerland had pointed out in lectures to medical doctors that the heart was not a pump forcing inert blood to move with pressure but that the blood was propelled with its own biological momentum, as can be seen in the embryo, and boosts itself with “induced” momenta from the heart. He also stated that the pressure does not cause the blood to circulate but is caused by interrupting the circulation. Experimental corroboration of Steiner’s concepts in the embryo and adult is herein presented. Introduction The fact that the heart by itself is incapable of sustaining the circulation of the blood was known to physicians of antiquity. They looked for auxiliary forces of blood movement in various types of etherisation' andpneumatisation’ or ensoulement of the blood on its passage through the heart and lungs. With the dawn of modern science and over the past three hundred years, such concepts became untenable. The mechanistic concept of the heart as a hydraulic pump prevailed and became firmly established around the middle of the nineteenth century. The heart, an organ weighing about three hundred grams, is supposed to pump' some eight thousand liters of blood per day at rest and much more during activity, without fatigue. In terms of mechanical work this represents the lifting of approximately 100 pounds one mile high! In terms of capillary flow, the heart is performing an even more prodigious task offorcing’ the blood with a viscosity five times greater than that of water through millions of capillaries with diameters often smaller than the red blood cells themselves! Clearly, such claims go beyond reason and imagination. Due to the complexity of the variables involved, it has been impossible to calculate the true peripheral resistance even of a single organ, let alone of the entire peripheral circulation. Also, the concept of a centralized pressure source (the heart) generating excessive pressure at its source, so that sufficient pressure remains at the remote capillaries, is not an elegant one. Our understanding and therapy of the key areas of cardiovascular pathophysiology, such as septic shock, hypertension and myocardial ischemia are far from complete. The impact of spending billions of dollars on cardiovascular research using an erroneous premise is enormous. In relation to this, the efforts to construct a satisfactory artificial heart have yet to bear fruit. Within the confines of contemporary biological and medical thinking, the propulsive force of the blood remains a mystery. If the heart really does not furnish the blood with the total motive force, where is the source of the auxiliary force and what is its nature? The answer to those questions will foster a new level of understanding of the phenomena of life in the biological sciences and enable physicians to rediscover the human being which, all too often, many feel they have lost. Overview Implicit in the notion of pressure propulsion in the cardiovascular system are the following four major concepts. (1) Blood is naturally inert and therefore must be forced to circulate. (2) There is a random mix of the formed particles in the blood. (3) The cells in the blood are under pressure at all times. (4) The blood is amorphous and is forced to fill its vessels and thereby takes on their form. However, there are observations that challenge these notions. It is seen that the blood has its own form, the vortex, which determines rather than conforms to the shape of the vascular lumen and circulates in the embryo with its own inherent biological momentum before the heart begins to function. Just as an inert vortex in nature pulses radially and longitudinally, we tentatively assume that blood is also free to pulse and is not subject to the pulse-restricting pressure implied in the pressure propulsion concept. The blood is not propelled by pressure but by its own biological momenta boosted by the heart. When the heart begins to function, it enhances the blood’s momentum with spiraling impulses. The arteries serve a subsidiary mimical heart function by providing spiraling boosts to the circulating blood. In so doing the arteries dilate to receive the incoming blood and contract to deliver an impulse to increase the blood’s momentum.